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Chiral magnetic e↵ect and chiral anomaly

The generation of electric-magnetic (EM) current in a plasma with
chiral fermions along the direction of magnetic field:

jCME = CAµAB = �AB , @µj
µ
A = CAB · E ,

where anomaly coe�cient is CA = (Nce
2)/(2⇡2) and µA the axial

charge potential. �A is refered as chiral magnetic conductivity.

Nielsen-Ninomia argument (1983):

µA
dnA

dt

= µACAB · E = jCME · E .

Energy needed to remove one chiral fermion is balanced by work done
by the CME current.

CME might play important roles in various physical situations, including
heavy-ion collisions (Kharzeev-McLerran-Warringa, 2007), astrophysi-
cal physics (Vilenkin, 1980) and condensed matter system (Nielsen-
Ninomia, 1983).
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Dynamical evolution of a chiral plasma

The evolution of axial charge density and EM fields are coupled
due to CME and anomaly relation.

Due to Ampere’s law, a CME current will induce EM field.

r⇥ B� @E

@t
= jEM = �AB+ �E ,

EM fields will back-react on the axial charge via anomaly equa-
tion:

@tnA = CAB · E .

What would be the fate of EM fields and axial charge density
(or �A) under such coupled evolution? Any universal feature of
such evolutions?
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Conservation of total helicity and inverse cascade of
magnetic helicity

We consider magnetic heilcity hm and define “fermonic helicity” hF :

hm ⌘
Z

d

3
xA · B , hF ⌘ C

�1
A

Z
d

3
x nA .

Total helicity of the system is conserved: h0 ⌘ hm + hF = const:

@thm(t) = �
Z

d

3
xE · B = �C

�1
A @t

Z
d

3
xnA = �@thF (t) .

Guiding principle: the system would prefer to preserve helicity while
minimize energy cost.

Inverse cascade of magnetic helicity: A “ small scale magnetic field”
would evolve into a “ large scale magnetic field” which has a smaller
energy per unit helicity (qualitative argument in the context of astro-
physics, Joyce-Shaposhnikov, 1997).

This work: dynamical realization of such inverse cascade and role played
by anomaly.
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Helicity spectrum I

To introduce magnetic helicity spectrum, we consider eigen-functions
(states) of curl operator:

r⇥ V±(x; k) = ±kV±(x; k) .

Those states are refered as Chardrasekhar-Kendall (CK) states in liter-
ature (Chardrasekhar-Kendall, 1957).

In an open space, CK states are just ploarized plane waves. We consider
CK states W±

lm(x; k) in a spherical symmetric domain:

r⇥W

±
lm(x; k) = ±kW

±
lm(x; k) .

where l = 0, 1, . . . ,m = �l ,�l + 1, . . . l . W

±
lm(x; k) can be expressed

in terms of spherical harmonics and spherical Bessel functions (and can
be found in Jackson’s textbook).
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Helicity spectrum II

We expand magnetic field B in terms of CK states W±
lm(x, ; k):

B(x, t) =
X

l ,m

Z 1

0

dk

⇡
k

2
⇥
↵+
lm(k , t)W

+
lm(x; k) + ↵�

lm(k , t)W
�
lm(x; k)

⇤
,

and introduce magnetic helicity spectrum which measures the relative weight
from one single mode W

±
lm(x; k):

g±(k , t) ⌘
X

l ,m

|↵±
lm(k , t)|

2 .

The magnetic helicity and energy of magnetic field can be expressed in
terms of g±(k , t) as

hm(t) ⌘
Z

d

3
x A(x, t) · B(x, t) =

Z 1

0

dk

⇡
k [g+(k , t)� g�(k , t)] ,

EM(t) ⌘
Z

d

3
x

1

2
B

2(x, t) =
1

2

Z 1

0

dk

⇡
k

2 [g+(k , t) + g�(k , t)] .

A single CK state W+(x, k) (W�(x, k)) carries positive (negative) helicity.
The energy cost per unit helicity for a single CK state is k .
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Inverse cascade driven by anomaly

The energy cost per unit helicity for a CK state W

±(x, k) is
given by k . The energy cost per unit helicity of a chiral fermion
is �A = C

�1
A µA.

CK states with k > �A will transfer magnetic helicity to fer-
monic helicity. Fermionic helicity will be transfered to soft mag-
netic modes k < �A.

The peak of magnetic helicity spectrum, kpeak, will decrease,
indicating inverse cascade.

The system will eventually approach the CK state with the
lowest possible k = kmin (equilibrium state).

NB: it is convenient to introduce a characteristic energy scale
kh, the energy cost per unit helicity of the system if total helcity
h0 is completely carried by chiral fermion, i.e. , h0 = hF . The
inverse cascade will not happen if kmin > kh.

Y.Y. helicity and anomaly



Maxwell’s theory in the presence of anomaly

Maxwell’s equation in the presence of chiral magnetic current gives:

�@tB(t, x) = r2
B(t, x) + �A(t) (r⇥ B) .

We have neglected the spatial dependence of nA(t) ⇡ V

�1
R
d

3
x nA(x, t)

where V is the volume.
In terms of ↵lm(k , t):

@t↵
±
lm(k , t) = ��1

⇥
�k

2 ± �A(t)k
⇤
↵±
lm(k , t) .

The system is non-linear. g±(k , t) thus hm(t) can be computed from
↵±
lm(k , t). �A(t) will be determined from self-consistency condition hm(t)+

hF (t) = const.

Mode with k > �A will decay exponentially. Instability: if k < �A(t)
(assuming �A > 0), ↵+

lm(k , t) will grow exponentially (Joyce-Shaposhnikov,
PRL, 1997).

We will use Maxwell’s theory in the presence of CME current + anomaly
relation to study the inverse cascade of magnetic helicity.
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Initial conditions

The evolution of �A(t), B(x, t) and magnetic helicity function
g(t, k) = g+(t, k)�g�(t, k) depends on initial profile: B(x; t =
0) and �A(t = 0) (or equivalently hF ,I/h0) .

To illustrate inverse cascade, we consider the scenario that ini-
tially the peak of magnetic helicity spectrum gI (k), kpeak �
kmin and magnetic helicity is dominant over fermionic helcity.

We take Hopfion solutions to vaccum Maxwell equation as the
initial condition for EM field. Such solution carries non-zero
helicity (which we assume to be positive) and finite energy.
(We will visualize a Hopfion solution in the real space later)

We will focus on the time dependence of kpeak(t),�A(t), hm(t)/h0
and magnetic helicity spectrum g(k , t).
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Stages of evolution

The evolution can be schematically divided into three stages.
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Stage I and Stage II

Magnetic helicity hm(t) decays exponentially and is transferred to fermionic
helicity. Meanwhile, kpeak(t) starts decreasing. The duration of “stage
I”, ⌧I , is approximately:

⌧I ⇠ �k�2
peak(t = 0) .

Stage II: in this stage, total helicity h0 ⇡ hF . kpeak(t) continues
decreasing. “Stage II” ends when peak is close �A. The duration
of this stage is:

⌧II ⇠ �k�2
h .
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Stage III: self-similar stage

in this stage, both �A(t) and peak(t) decrease and �A(t) ⇡ peak(t)
(r⇥B ⇡ kpeak(t)B ⇡ �A(t)B). hm(t) will approach h0. �A(t),p(t)
behave as a power law in t :

kh(t) ⇡ �A(t) / t

�� .

Meanwhile, the evolution of g(k , t) becomes self-similar:

g(k , t) ⇠ t

↵
g̃(t�k) , ↵ = 1 , � = 1/2 .
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Scaling exponents

As hm ⇡ const at late time, we have from that ↵ = 2�:

hm(t) =

Z
dk

⇡
kg(k) =

Z
dk

⇡
k t

↵
g̃(t�k) = t

↵�2�
Z

dx

⇡
g̃(x) ⇡ const .

From Maxwell’s equations, one would have

g

±(k , t) = g

±
I (k) exp

(
2��1


�k

2
t ± k

Z t

0
dt

0 �A(t
0)

�)
.

Matching to scaling form g̃(t�k) gives:

� =
1

2
, �A(t) ⇠ t

��1 .

Using kpeak(t) ⇠ �A(t), we have:

g(k , t) / exp{�2��1 [k � kp(t)]
2
t} ! �(k � kpeak(t)) .

During self-similar evolution, the width of Gaussian becomes narrower
and narrower and magnetic field is close to a single CK stateW+(kpeak(t), t).
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A brief summary

We start with a “small scale magnetic field” and follow its evolution.

The magnetic helicity is first transfered to fermionic helicity and later
ferminoic helicity is transfered into magnetic helicity.

kpeak(t) decreases, indicating inverse cascade.

The system spends a long time in self-similar stages.
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Hopfions solutions

Hopfion solutions might be interpreted as a soliton wave solution to
Maxwell’s equation.

BHopf(x, t) /
r

4

3⇡

Z 1

0
dkk

2
e

�kLHopf

h
(kL2Hopf)W

+
11(x; k)e

�ikt + c.c.
i
,

EHopf(x, t) /
r

4

3⇡

Z 1

0
dkk

2
e

�kLHopf

h
(�ikL

2
Hopf)W

+
11(x; k)e

�ikt + c.c.
i
,

where LHopf controls the size of a Hopfion solution.
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Hopfion vs CK state
• Magnetic helicity counts number of linking and knots. 	


• We have studied the evolution of magnetic field from a Hopfion 
configuration towards a single CK states. 	


• For a Hopfions solutions, field lines form closed loops and are linked. A 
single CK state is “knotted”.

Hopfion A single CK state



Snapshot of field lines during the evolution

Initial time Stage I Stage II
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Summary

• We have studied the inverse cascade of magnetic helicity driven by 
anomaly.	


• Due to interplay between EM field and chiral anomaly, the evolution 
at late stage is self-similar. 



Any signal in heavy-ion collisions experiment?

• Helical EM fields are created by 
spectators. According to the scenario of 
inverse cascade, they would evolve into 
“a large scale” magnetic field and emit 
soft polarized photons at freeze-out 
time. 	


• The polarization of photons depends on 
the azimuthal angle. 

• To satisfy                                      , we need to have large initial magnetic helicity, 
which corresponds to very strong local EM fields                              , which 
might be realized by event-by-event fluctuations. 



Outlook

• Extension to anomalous magneto-hydrodynamics (interplay among 
magnetic helicity, fermionic helicity and kinetic helicity).	


• Generalization to non-Abelian theories (personal conjecture): would 
inverse cascade affect the generation of topological charges? would                    
the long time limit                                     be modified. 


